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A simple difference method is proposed for integrating the thermal
and hydrodynamic boundary layer equations for a steady flow of com-
pressible fluid along a permeable plate.

The system of boundary layer equations for a com-
pressible fluid flowing along a permeable plate in the
presence of heat transfer can be written in the follow-
ing dimensionless form:
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where the temperature criterion 8 = (cp/cv- 1)ME.
This system of equations can be solved exactly only in
individual cases for fixed thermophysical characteris-
tics and very simple boundary conditions. Thus, for
solving most practical problems various approximate
methods are employed. Numerical methods are now
most frequently used for solving boundary layer prob-
lems. A number of authors [1-3] have proposed im-
plicit difference methods for solving the equations of
plane and axisymmetric boundary layers. These meth-
ods have certain disadvantages, in particular, the
difficulties that arise in calculating the initial section
and ensuring a smooth matching of the longitudinal
veloeity u{xyy) and temperature t(x,y) functions and
the functions V(x) and T(x) at the outer edge of the
boundary layer.

In what follows an explicit difference method is pro-
posed for solving Eqgs. (1) —(3) with the following bound-
ary conditions:
£0, y) =1, () “)

u(o: y) =Uy (y)r U(O' y) =0 (y);

ufx, 0)=0, v(x, 0) =v.(x), t(x, 0)=4¢(x), {5)
0% [V (x) —u(x, y) _o,
I ayk Und-
O [T (x) — £ (x, y)] 0
ay* PICS
E=0,1, .., (6)

where the functions uy(y), vo(¥), t(y), ve(x), tel(x),
V{x), T(x) are assumed given,

To solve problem (1)—(6) in the plane (x,y) we in-
troduce the rectangular network

n=0,1, .. 1>0,
h == const.

Xn = nl:

Yp=mh, m=0,1, ..,

For problem (1)~(6) we substitute the following dif-
ference problem to determine the approximate values

Unm, Vpm, and thy, of the functions w(xy, v, vixp,
Ym)» and tlxp, ym):
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Results of Solving the Problem ofthe Boundary Layer ona Flat Plate

Results of numerical solution Results
y* of exact
x=0.01 | £=0.04 | x=0.00 I x=0.16 solution

0 0 0 [\] 0 0
1 0.33557 (,33070 0.33031 0.33005 0.32979
2 0.64071 6.63178 0.63082 0.63030 0.62977
u 3 0.84692 0.84692 0.84649 0.84617 0.84605
v 4 0,95080 0.95480 0.956501 0.95507 0.95552
5 0.99116 0.99115 0.99107 0.99116 0.99155
6 1 0.99908 0.99885 0.99886 © 0.99898
7 1 1 0.99991 0.99990 0.99992

8 1 1 1 1 1

X

c=l/ W, 0.33857 0.33243 0.33236 0.33220 0.33206
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Condition (13) ensures that the functions u and t and
their derivatives up to the k~th order are smoothly
joined with the functions V and T. It was obtained as
follows. In accordance with condition (6) the absolute
values of the difference derivatives of the functions u
and t near the outer edge of the boundary layer must
decrease monotonically, i.e., on the layer n + 1 there
must exist three successive points such that
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The approximate value of the k-th order derivative
is found with the following difference relation:
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From conditions (14) and (15) it follows that
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Condition (13) follows directly from the expressions for
the difference derivatives (Bkzp/ayk)nﬂ and (akzp/ayk)§’f§.

It should be noted that the use of the proposed method
of matching functions is not confined to the boundary
layer problem. Relation (13) can also be used, for ex-
ample, in the numerical solution of problems of the
temperature field in an infinite or semi-infinite mass.

The procedure for solving difference problem (7) -
(13) is as follows. The values ugm, Vym, tom» m = 1,
2,... are determined from conditions (10). If the cal-
culations are made starting from the leading edge of
a plate exposed to a flow with equalized velocity and
temperature fields, then, uym = V{0), vym =0, tym =
= T{0), m =1, 2,....By proceeding stepwise along
the x-axis we can determine the network functions u,
v, and t for the entire region in question. In fact, we
will assume that Uy, Vips tims 1 =1, 2, ..., 1
have already been found, and it is required to deter-
mine them for i = n + 1. First, we find the values
Up+1, m and thii,m from conditions (7), (9), and (11),
checking that the inequality of (13) is satisfied for all
m > My = 0. If this inequality is satisfied, further
computation of the velocities and temperatures from
(7) and (9) on the layer n + 1 ceases, since condition
(12) enters into force. The transverse velocity on the
layer n + 1 is calculated from conditions (8) and (13)
successively for m = 1, 2,.... This velocity becomes
constant at m = My,4,;. The number My, which affects
the error in computing the network functions near the
leading edge of the plate, should be selected in the
range from 1 to 3.

An investigation of the convergence of the solution
of problem (7)—(13) to the solution of the system of
nonlinear differential equations (1)—(6) presents con-
siderable difficulties. However, the necessary con-
vergence conditions can be obtained as follows. For
convergence it is necessary that the difference scheme
consist of equations, the solution of each of which
converges to the solution of the corresponding differ-
ential equation and is consistent if all the unknown
functions but one have been exactly determined.

We assume that the velocity field is given in the
region in question. Then for convergence of the solu-
tion of the difference equation of heat propagation
(9) to solution (3) the following conditions must be
satisfied [4]:

0<M, <05, [N, |<L. (16)

nnt
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We further assume that the transverse component
of the velocity vector and the thermophysical char-
acteristics are given functions of the coordinates,
while the solution of Eq. (1) with certain given bound-
ary conditions is a sufficiently smooth function sat-
isfying the condition u{x,y) = C; > 0. By Cy, i = 1, 2,

. we denote positive constants. Then we can show
that if the conditions

0 My, <05, [N, < 1 17

are satisfied, the network function u,,, converges to
the exact solution as h — 0. In fact, in accordance
with our assumptions, Eq. (1) can be written in the
following form:
u (xn+1a ym) = [1 - 2M (xm ym)] u(xm ym) +
+ M(xn’ ym) (1 + Nnm)u(xn? ym—l) +
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where epmy = ulk,, yo) — Upm, using conditions (7)
and (16) we obtain
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Here, 6, is a number not less than the maximum of
the absolute value of the error eny for layer n; C4 =
= max [0%u/8y%; C5 = max |[pu/dy|. From the latter in-
equality there follows the convergence of the network
function to the function u{xy, yy,) with the given as-
sumptions. The steps ?and h of the difference network
are selected on the basis of conditions (14) and (15).
Difference scheme (7)—(12) was numerically tested
by solving a number of hydrodynamic and thermal
boundary layer problems on a BESM-2M computer.
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In the calculations the dynamic viscosity y was as-
sumed to be a function of temperature, and the density
p inversely proportional to the temperature.

Numerous calculations, in which the quantities
Pr, p, p, v, to, 6 were varied, showed that violation
of conditions (14) and (15) makes the computation pro-
cess unstable.

The accuracy of solutions obtained by the proposed
difference method can be judged from a comparison
of the numerical solution and the known exact solution
for the problem of the boundary layer on a plate in a
stationary homogeneous external flow [5]. The table
presents the results of solving this problem for the
following starting data: uy = V=1; vy=ve =0; t) =
=T =t =1;0=0;Pr=1; p=1;h = 0,01; 7 = 0.0001.
It is clear from the table that the errors in computing
the velocities, which are presented as a function of
the dimensionless coordinate y*= y+Wp/ux, decrease
in the direction of the x-axis. The same applies to the
error in computing the friction stress on the plate
surface 7, which is calculated from the formula

Upy —Ung
T, = Bp —————
n = W "
The error in computing T, at x = 0.16 does not exceed
0.05%. It should be noted that the rate of increase of
the number of steps M along the y-axis decreases
rapidly along the flow.

NOTATION

u and v are the longitudinal and transverse com-
ponents of the velocity vector; p is the density; u is the
coefficient of dynamic viscosity; V, T, and p« are the
longitudinal velocity, temperature, and density at the
outer edge of the boundary layer; Pr is the Prandfl
number; ¢ is the temperature criterion; Cp and ¢y de-
note the specific heats at constant pressure and vol-
ume; M is the Mach number; 7 is the friction stress;
y* is the dimensionless coordinate. Subscripts: 0) pa-
rameters in the initial section of the boundary layer;
¢} parameters at the surface of the plate.
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